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SYNOPSIS 

Liquids are transferred through nonporous polymers provoking a change in dimension. A 
mathematical treatment of the process of radial diffusion through a sphere with consequent 
change in dimension is made, as well as a numerical treatment of the process. The case is 
considered when the concentration of the liquid on the surface is constant during absorption 
and then the surrounding fluid is of finite volume and strongly stirred during the stage of 
desorption. The kinetics of absorption-desorption histories are calculated for various values 
of the volume expansion due to the presence of liquid. The profiles of concentration as 
well as the kinetics of change in dimension are also evaluated. Two parameters are intro- 
duced the maximum of the volume expansion of the polymer and the ratio between the 
amount of liquid in the polymer and that contained in the surrounding at  the final equi- 
librium of desorption. 0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

When a polymer is in contact with a diffusing sub- 
stance, for example, a liquid, a mass transfer gen- 
erally takes place and is controlled by diffusion. 
When this polymer is then being immerged into a 
surrounding atmosphere, a desorption of the sub- 
stance can be observed. When the amount of trans- 
ferred liquid is negligible, the process of diffusion 
can be described by Fick's laws established with 
constant dimensions of the solid.' It is well known 
that depending on the amount of the transferred 
diffusing substance, a change in dimensions of the 
solid is observed, especially with nonporous poly- 
mers such as rubbers or other elastomeric materials 
for which the amount of the transferred liquid can 
reach up to 100% of the volume of the solid or 
m ~ r e . ~ , ~  

From a theoretical point of view, the mathemat- 
ical treatment of diffusion through a solid with con- 
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sequent change in dimension is of great interest. 
The classical studies leading to the second Fick's 
law, require constant dimensions of the solid what- 
ever the amount of liquid transferred.' When a no- 
ticeable change in the dimensions of the solid is ob- 
served, the second Fick's law is thus not valid. From 
a practical point of view, the change in the polymer 
dimensions following the process of diffusion 
through this polymer may appear of high concern, 
especially in mechanics 2-4 or in other applications. 

Applications of the swelling of biocompatible 
polymers in oral dosage forms for controlling the 
release of a drug in the stomach were con~idered,~.~ 
and two dimensionless numbers were introduced 
with the Deborah and the Swelling interface num- 
bers. In depth studies made on the interdiffusion of 
two diffusing substances provoking a volume change 
on mixing were summed up.' The kinetics of the 
swelling of acrylamide gels was determined by con- 
sidering the shear modulus of the s01id.~ Even a far 
more complex system with various solvents and in- 
terpenetrating polymer networks was investigated, 
with the kinetics of swelling and equilibrium con- 
ditions showing that the number of phases in the 
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Figure 1 
MRVE = 1.001. 

Kinetics of absorption-desorption for various values of RD and for the value 

system plays a major role? The process of diffusion- 
evaporation of various substances with copolymers 
of ethylene vinyl acetate was studied by taking into 
account the consequent shrinkage, and a numerical 
model was established by B o u ~ o n . ~ * ' ~ * ' ~  As a matter 
of fact, as already stated," few studies have taken 
into consideration the kinetics of change in dimen- 

sion associated with the diffusion of a liquid through 
a polymer. 

The first objective in this article is to consider 
the case of absorption-desorption of a liquid asso- 
ciated with a consequent change in dimensions. The 
two stages of the process are controlled by radial 
diffusion through a polymer that is spherical in 
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Figure 2 
MRVE = 1.25. 

Kinetics of absorption-desorption for various values of RD and for the value 
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shape. As the coefficient of mass transfer on the 
surface of the polymer is very high, the concentra- 
tion of the diffusing liquid on the surface is, a t  each 
moment, equal to the concentration required in the 
bead to maintain equilibrium with the external con- 
centration existing at  this precise moment. The fol- 
lowing case is considered in particular: during the 

stage of absorption, the polymer is in contact with 
the diffusing liquid, while during the stage of de- 
sorption, the polymer is in contact with a finite vol- 
ume of a surrounding fluid that does not penetrate 
the polymer. 

The other purpose of this study was to precisely 
determine the effect of the various parameters that 
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Figure 4 
MRVE = 5.0. 

Kinetics of absorption-desorption for various values of RD and for the value 
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Figure 5 
RD = 0.9, CED = 9.89. 

Concentration profile for various values of time t*, for MRVE = 1.001, 

intervene in the process: the relative volume expan- 
sion of the solid resulting from the presence of the 
liquid and the maximum value of this relative vol- 
ume expansion; the ratio of the volumes of the poly- 
mer and the surrounding atmosphere during the 
stage of desorption; and the diffisivity of the sub- 
stance through the polymer. A numerical model 
taking all the facts into account is derived and used 
for calculation. 

THEORETICAL 

Assumptions 

The following assumptions are set forth in order to 
establish the problem clearly: 

1. The polymer is spherical in shape and ho- 
mogeneous, with a radial diffusion. 

2. The volume of the bead is constantly equal 
to the sum of the volumes of the polymer and 
of the liquid located in it. 

3. The coefficient of mass transfer on the sur- 
face of the polymer is so high that it may be 
considered as infinite, so that the internal 
concentration of the diffusing liquid at  the 
surface of the bead is constantly in equilib- 
rium with the external concentration that 
exists at the same time. 

4. The stage of absorption is obtained by im- 

mersing the solid in the pure liquid, so that 
the external concentration is uniform and 
constant, equal to the density of the liquid. 
Thus the liquid concentration on the surface 
reaches the value at equilibrium as soon as 
the process starts. 

5. The surrounding fluid has a finite volume and 
is strongly stirred during the stage of desorp- 
tion, so that the external concentration is 
constantly uniform and increases with time. 

6. The internal pressure in the polymer due to 
its dilatation is not considered, although it 
may intervene, especially at the beginning of 
the stage of desorption. 

Mathematical Treatment 

Two kinds of abscissa are considered for character- 
izing the position of a point in the polymer: the ca- 
nonical radial abscissa, u ,  that is to say the radial 
abscissa when the bead is liquid free; and the actual 
radial abscissa at time t ,  r ( u,  t )  , that varies with 
the swelling. Of course, for t = 0: 

r ( u , O ) = u  with O s u s R  (1) 

where R is the canonical radius of the bead, that is, 
its radius when it is free from liquid. The actual 
radius at time t is r (  R,  t ) .  

The membrane with a canonical average radius, 
u, and a canonical thickness, Au, is considered. The 
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Figure 6 
RD = 0.9, CED = 11.75. 

Concentration profile for various values of 

volume of this membrane at time t, with some liquid 
in it, is: 

~ ( u ,  t )  = * 3 [r3(u + $, t )  - r3(u - $, t ) ]  

4a 
3 

= - A(r3).  ( 2 )  

The volume of the membrane free from liquid is: 

4a 
3 

V(U, 0 )  = - A(u3).  (3) 

The additivity of the volumes of polymer and liq- 
uid is written as follows: 

where C(u, t )  is the average concentration of liquid 
in the membrane at time t, and d is the density of 
the liquid. C(u, t )  and d are expressed in the same 
units (g/cm3). 

The volume expansion is easily drawn from the 
above equations: 

leading to 

time t*, for MRVE = 1.25, 

the radial expansion: 

-= - . [ l -d ]  ar u2 C ( U ,  t )  -l 
au  

The mass balance during the interval of time [t, 
t + At] ,  within the membrane, when At + 0, leads 
to: 

- a [V(U, t ) * C ( u ,  t ) ]  
at 

With the volume of this thin membrane drawn 
from eqs. (5) and (3), and when Au + 0, eq. (7) is 
rewritten as follows: 

The gradient aC/ar by using eq. (6) is: 

and eq. (8) finally becomes: 

"(1 at -p] 
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Figure 7 Concentration profile for various values of time t*, for MRVE = 2.5, 
RD = 0.9, CED = 17.12. 

Equations (6) and (lo), which were also estab- 
lished by Bouzon,ll represent the general expression 
of the radial diffusion through a sphere with con- 
sequent change in dimensions. These equations 
generalize the second Fick's law for radial diffusion 
in a sphere. This law becomes a particular case when 
the volume of transferred liquid is negligible, as 

r + u a n d  1 - -  +1: ( 
ac 1 d 
at r2 ar 
- - - - . - [ ? . D . z ] .  

Constant Diff usivity Case 

Upon replacing the dimensionless variables u/R,  r/ 
R ,  D - t /R2,  and C/d by the notations u, r, t ,  and C,  
the general set of equations is obtained 

dr u2 
au 3 
- - -. - (1 - C)-l 

u2 au a " u2 
a 
- [(l - C)-l*C] = -.- - * ( l  - 
at 

By using these dimensionless variables, the curves 
are not dependent on the values of R, D, and d. 
Therefore the following values are taken for drawing 
the curves: R = 1, D = 1, d = 1. 

For the stage of absorption these curves depend 
on a unique parameter, the constant concentration 

on the surface, CEA, which can also be defined by 
the maximum relative volume expansion (MRVE): 

p =  ( I - -  C,,)-l. 

But for the stage of desorption, the curves also 
depend on two other parameters: the initial profile 
of desorption, which is a function of the immersion 
duration, and the ratio of desorption, RD, which is 
a function of the surrounding volume, V, and of the 
partition coefficient, K. 

Boundary Conditions 

Absorption 

As soon as the process starts, the surface concen- 
tration of the diffusing liquid is equal to the con- 
centration required in the bead to maintain equilib- 
rium with the constant concentration in the sur- 
rounding: 

C(R, t )  = CEA with CEA = k * Cext = k - d, (13) 

k being the partition coefficient for the absorption. 
Its value is: 
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Figure 8 Concentration profile for various values of time t*, for MRVE = 5.0, 
RD = 0.9, CED = 20.52. 

Desorption 

As the surrounding fluid is of finite volume, V,  and 
strongly stirred, the concentration of the diffusing 
substance in the fluid is uniform and equal to 

where Mt is the amount of the diffusing substance 
released from the polymer in the surrounding up to 
time t. The concentration on the surface of the poly- 
mer is 

Cert, t  == Mt 7 C(Ri t )  = K .  Cex t , t  (15) 
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Figure 9 Concentration profile for various values of time t*, for MRVE = 2.5, 
RD = 0.5, CED = 60.67. 
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K being the partition coefficient for the desorption. 
Thus is obtained 

C(R, t )  = KvsM,  with K v  = K / V .  (16) 

There is also 

Mt = MPI - MP,, (17) 

where MPI is the amount contained in the bead at  
the end of immersion, which is also that at the be- 
ginning of desorption and MP, is the amount of liq- 
uid contained in the bead at time t. 

Calculation of K, 

At the final equilibrium of desorption the concen- 
tration is uniform in the bead, then 

Numerical Treatment 

As the numerical model for the radial diffusion with 
the change in dimensions has already been estab- 
lished in the case of a constant concentration on 
the surface,12 only the main results are given. 

The radius of the liquid-free sphere is divided into 
N intervals of equal thickness Au, and the radial 
abscissa, u,  of each obtainedpoint is associated with 
an integer j :  

u = j . A u  with O i j i N  

R 
N '  

and Au = - (24) 

At time t ,  the radial abscissa associated with j 
becomes rj, because of the presence of the liquid. Its 
value is given by: 

where VB, is the canonical volume of the bead and 
MP, is the amount of the diffising liquid remaining 
in the bead at the final equilibrium of desorption. 

The ratio of desorption is defined E 

M ,  
MPI 

R D = -  

Then 

M ,  = RD * MPI, MP, = (1 - RD) 

Finally eq. (16) allows one to obtain: 

(19) 

MPI. (20) 

1 - RD 
(1 - RD) - MPI] . (21) 

d 

Concentration at Final Equilibrium of Desorption 

Equation (15 )  gives 

With eq. (14) the ratio is obtained 

c, CED = - 
CEA 

(1 - RD) * MPI 
. (23) - 

(1 - RD) * MPI]. ( 1 - -  i) - d  
- [ V B c +  d 

+ [ j 3  - ( j  - 0.5)3]  

for 1 I j I N .  (25)  

Within Sphere (1 I j I N - 1) 

The volumes of the spherical membrane limited by 
the canonical abscissae 0' - 0.5)Pu and 0' + 0.5)Au, 
at the moments t and t + At, are noted Vj and VNj, 
respectively, and the respective amounts of liquid 
located in this membrane are noted Bj and BNj: 

BNj = VNj - CNj 

= Bj + 47r * (Gj+0.5 - Gj-0.5) - At  (26 )  

with the function G 

and the new concentration is: 

CNj = BNj-[47r(;r.(I.  + h) + y]'. (28 )  

Center of Sphere (j = 0) 

The new amount BNo in the small sphere of canon- 
ical radius Au/2  is: 
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and the new concentration CNo: 

4~ R BN0-l 
CNo = BNo- [- 3 (-r 2N + -7-1 . (30) 

Surface of Sphere (i = N) 

For the stage of absorption, the concentration on 
the surface is constant, equal to the equilibrium 
concentration: 

For the stage of desorption, the concentration on 
the surface is constantly proportional to the con- 
centration of the diffusing substance in the sur- 
rounding: 

K 
C - -. Mt = Kv.  (MPI - MP,) (32) 
N -  V 

Amount of Liquid Located in Sphere 

The amount of diffusing substance located in the 
sphere at  time t, MPt, is obtained by integrating the 
concentration in the sphere at time t with respect 
to space: 

N3 - (N - 0.5)3 
3 c;, x (1 - ?)-l + 

x 1 - - (33) ( :)l 
where Ck is the mean concentration of the spherical 
membrane between the positions N - 0.5 and N. It 
is about equal to the concentration at  the position 
N - 0.25 and is evaluated by linear interpolation: 

Stability of Calculation 

The condition for stability of calculation is obtained 
by writing that the coefficient of concentration Co 
in eq. (29) is positive13: 

D2 LC 
At I 

6N2 * DM (35) 

where DM is the maximum value of the diffu- 
sivity. 

RESULTS 

We have chosen the case when the diffusivity is 
constant. Two kinds of results deserve mention: 
the kinetics of matter transferred along the two 
stages of absorption and desorption and the pro- 
files of liquid concentration with the change in 
dimensions. 

The kinetic curves are represented by the values 
of the ratio M t / M ,  as a function of the dimension- 
less time t * = (D - t )  / R 2 ,  where R is the radius of 
the liquid-free sphere. 

The profiles of concentration are represented 
by the ratio C,, /CEA ( % )  as a function 
of radial abscissa r ,  which varies with the 
swelling. 

As we have previously shown, l4 these curves 
do not depend on the values of R ,  D , or d .  They 
only depend on the parameters maximum relative 
volumic expansion p, duration of immersion, and 
desorption ratio RD. The calculations are made 
with the values R = 1, D = 1, d = 1, N = 200, At  
= 4 X The parameter /3 takes the values 
1.001, 1.25, 2.5, 5, and RD the values 0.1, 0.5, 
0.75,0.9, and 1 (complete desorption). In all cases 
the immersion is interrupted at  the dimensionless 
time t* = 0.4. 

Kinetics of Matter Transfer for Process of 
Absorption-Desorption 

The kinetics of matter transfer during the stages of 
absorption and desorption are drawn in Figs 1-4 for 
various values of the maximum relative volume ex- 
pansion. 

The following conclusions are worth noting: 

The effect of the value of the maximum rel- 
ative volume expansion, /3, on the kinetics of 
absorption is significant, with the statement 
that the higher the value of p, the slower the 
kinetics of substance absorbed. 
Following the above, equilibrium of absorp- 
tion is nearly obtained when p is 1, but equi- 
librium is far from being reached when /3 is 
much higher than 1. 
When /3 is close to 1 ( l . O O l ) ,  meaning that 
the volume of liquid absorbed is very low, the 
kinetics calculated for absorption either with 
the numerical model or with the well-known 
solution of the Fick's law for radial diffusion 
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are the same: 

X exp(- ~2 n2r2  D t )  . (36) 

4. When @ is higher than 1, the kinetics of de- 
sorption are faster than the kinetics of absorp- 
tion, especially in the earlier stages of the pro- 
cess. The higher the @, the greater the difference. 

5. For RD = 1 (complete desorption) , the curves 
are the same as in the case of infinite volume 
of the surrounding atmo~phere.'~ 

6. Whatever the value of RD, desorption is very 
fast at the beginning of the process. For the 
small values of parameter RD, final equilib- 
rium is reached very quickly. 

Profiles of Substance Concentration and Change 
in Dimension 

The profiles of concentration of the diffusing sub- 
stance developed through the sphere are drawn for 
various values of @ and RD in: Figure 5 (@ = 1.001 
and RD = 0.9); Figure 6 (@ = 1.25 and RD = 0.9); 
Figure 7 (@ = 2.5 and RD = 0.9) ; Figure 8 (@ = 5.0 
and RD = 0.9); Figure 9 (@ = 2.5 and RD = 0.5). 

The change in dimensions of the sphere is also 
shown. The concentration at time t , Ct , is expressed 
as a fraction of the maximum value of this concen- 
tration, attained when the solid is saturated with 
liquid. Various profiles are drawn for different values 
of the dimensionless number t * = D - t / R 2. 

The following facts deserve mention: 

1. In Figure 5, for @ = 1.001, the change in dimen- 
sions is negligible. In the other figures when @ 
> 1, an increase in the radius is observed during 
the stage of absorption, and a shrinkage appears 
with the desorption. Of course, the higher the 
maximum relative volume expansion @, the 
greater the change in dimensions. 

2. Because of the very high value of the coeffi- 
cient of matter transfer on the surface, the 

concentration of the diffusing substance on 
the solid surface reaches the value at equilib- 
rium with the surrounding as soon as the 
process starts, that is, CEA, during the stage 
of absorption. At the initial time of desorp- 
tion, the surface concentration immediately 
reaches the value zero and then it increases 
gradually up to the final equilibrium value 
C ,  (represented by CED in the figures). 

3. In all cases, equilibrium is not reached at the 
end of the stage of absorption after a value 
of D - t / R 2  = 0.4, as the time selected for the 
stage of absorption is rather low. 

4. Again, the concentration profiles of the dif- 
fusing substance are the same at the end of 
the stage of absorption and at the beginning 
of the following stage of desorption. 
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